Measure-Theoretic Analysis and Nonlinear Conservation Laws
نویسندگان
چکیده
We discuss some recent developments and trends of applying measure-theoretic analysis to the study of nonlinear conservation laws. We focus particularly on entropy solutions without bounded variation and Cauchy fluxes on oriented surfaces which are used to formulate the balance law. Our analysis employs the Gauss-Green formula and normal traces for divergence-measure fields, Young measures and compensated compactness, blow-up and scaling techniques, entropy methods, and related measuretheoretic techniques. Nonlinear conservation laws include multidimensional scalar conservation laws, strictly hyperbolic systems of conservation laws, isentropic Euler equations, two-dimensional sonic-subsonic flows, and degenerate parabolic-hyperbolic equations. Some open problems and trends on the topics are addressed and an extensive list of references is also provided.
منابع مشابه
On Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملEuler Equations and Related Hyperbolic Conservation Laws
Some aspects of recent developments in the study of the Euler equations for compressible fluids and related hyperbolic conservation laws are analyzed and surveyed. Basic features and phenomena including convex entropy, symmetrization, hyperbolicity, genuine nonlinearity, singularities, BV bound, concentration, and cavitation are exhibited. Global well-posedness for discontinuous solutions, incl...
متن کاملDivergence-Measure Fields and Hyperbolic Conservation Laws
We analyze a class of L∞ vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of L∞ fields. Then we apply this theory to analyze L∞ entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume t...
متن کامل